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SUMMARY

Circulant matrices play a central role in a recently proposed formulation of three-way data computations. In
this setting, a three-way table corresponds to a matrix where each ‘scalar’ is a vector of parameters defining
a circulant. This interpretation provides many generalizations of results from matrix or vector-space algebra.
These results and algorithms are closely related to standard decoupling techniques on block-circulant
matrices using the fast Fourier transform. We derive the power and Arnoldi methods in this algebra. In the
course of our derivation, we define inner products, norms, and other notions. These extensions are straight-
forward in an algebraic sense, but the implications are dramatically different from the standard matrix
case. For example, the number of eigenpairs may exceed the dimension of the matrix, although it is still
polynomial in it. It is thus necessary to take an extra step and carefully select a smaller, canonical set of size
equal to the dimension of the matrix from which all possible eigenpairs can be formed. Copyright © 2012
John Wiley & Sons, Ltd.

Received 24 August 2011; Revised 13 February 2012; Accepted 20 May 2012

KEY WORDS: block-circulant; circulant module; tensor; FIR matrix algebra; power method; Arnoldi process

1. INTRODUCTION

We introduce and study iterative algorithms in a circulant algebra, which is a recent proposal by
Kilmer et al. for a set of operations that generalize matrix algebra to three-way data [1, 2]. In
particular, we extend this algebra with the ingredients required for iterative methods such as the
power method and Arnoldi method, and study the behavior of these two algorithms.

Given an m � n � k table of data, we view this data as an m � n matrix where each ‘scalar’
is a vector of length k. We denote the space of length-k scalars as Kk . These scalars interact like
circulant matrices. Circulant matrices are a commutative, closed class under the standard matrix
operations. Indeed, Kk is the ring of circulant matrices, where we identify each circulant matrix
with the k parameters defining it.

Formally, let ˛ 2Kk . Elements in the circulant algebra are denoted by an underline to distinguish
them from regular scalars. When an element is written with an explicit parameter set, it is denoted
by braces, for example

˛ D f˛1 : : : ˛kg .

In what follows, we will use the notation $ to provide an equivalent matrix-based notation for
an operation involving Kk . The following operations will define the basic computational routines
to treat m � n � k arrays as m � n matrices of Kk . They are equivalent to those proposed by
Kilmer et al. [1, 2], and they constitute a module over vectors composed of circulants, as shown

*Correspondence to: David F. Gleich, Computer Science, Purdue University, West Lafayette, IN, USA.
†E-mail: dgleich@purdue.edu

Copyright © 2012 John Wiley & Sons, Ltd.
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recently in Braman [3]. Our notation differs slightly. We define the operation circ.�/ as the
‘circulant matrix representation’ of a scalar:

˛ $ circ.˛/�

2
66664
˛1 ˛k : : : ˛2

˛2 ˛1
. . .

...
...

. . .
. . . ˛k

˛k : : : ˛2 ˛1

3
77775 . (1)

Let ˛ be as in (1), and also, let ˇ 2Kk . The basic addition and multiplication operations between
scalars are then

˛C ˇ$ circ.˛/C circ.ˇ/ and ˛ ı ˇ$ circ.˛/circ.ˇ/. (2)

We use here a special symbol, the ı operation, to denote the product between these scalars,
highlighting the difference from the standard matrix product. Note that the element

1D f1 0 : : : 0g

is the multiplicative identity.
Operations between vectors and matrices have similar, matricized, expressions. We use Kn

k
to

denote the space of length-n vectors where each component is a k-vector in Kk and Km�n
k

to denote
the space of m � n matrices of these k-vectors. Thus, we identify each m � n � k table with an
element of Km�n

k
. Let A 2Km�n

k
and x 2Kn

k
. Their product is

A ı xD

2
64
Pn
jD1A1,j ı xj

...Pn
jD1Am,j ı xj

3
75$

2
64circ.A1,1/ : : : circ.A1,n/

...
. . .

...
circ.Am,1/ : : : circ.Am,n/

3
75
2
64circ.x1/...
circ.xn/

3
75 . (3)

Thus, we extend the operation circ to matrices and vectors of Kk scalars so that

circ.A/�

2
64circ.A1,1/ : : : circ.A1,n/

...
. . .

...
circ.Am,1/ : : : circ.Am,n/

3
75 and circ.x/�

2
64circ.x1/...
circ.xn/

3
75 . (4)

The definition of the product can now be compactly written as

A ı x $ circ.A/ circ.x/. (5)

Of course, this notation also holds for the special case of scalar–vector multiplication. Let ˛ 2 Kk .
Then

x ı ˛ $ circ.x/ circ.˛/.

On the basis of this analysis, we term the set of operations the circulant algebra. We note that these
operations have more efficient implementations, which will be discussed in Sections 3 and 6.

1.1. Contribution and outline

All prior algorithms for the circulant algebra have been direct methods. Our contribution in this
paper is to derive the power and Arnoldi iterative methods. Toward this end, we first define inner
products, norms, and other notions necessary for these algorithms (Section 2). We then continue
this discussion by studying these same operations using the Fourier transform of the underlying cir-
culant matrices (Section 3). In Fourier space, the matrix representation decouples, as illustrated in
Figure 2. Theoretical properties of eigenvalues in the circulant algebra are analyzed next (Section 4).
An important finding is that there may be more eigenpairs than the dimension of the matrix, but these
can all be presented by a unique canonical set (Theorem 7). Our discussion continues with the main
contribution: the power method [4] and the Arnoldi method [5–7] in this algebra (Section 5). We
next explain how we implemented these operations in a MATLAB package (Section 6), and we pro-
vide a numerical example of the algorithms (Section 7). Section 8 concludes the manuscript with
some ideas for future work.

Copyright © 2012 John Wiley & Sons, Ltd. Numer. Linear Algebra Appl. 2013; 20:809–831
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1.2. Related work

A recent preprint by Kilmer, Braman, and Hao [8] addresses many of the same issues. We use a
slightly different notation and treat the notions of angle and ordering of elements in the algebra dif-
ferently. A common theme in the study of this algebra is the use of the Fourier transform to decouple
the problem. For instance, Kilmer and Martin [2] utilize this aspect to state the QR factorization in
the algebra, and Braman [3] uses it to study eigenvalues.

The circulant algebra analyzed in this paper is closely related to the FIR matrix algebra due to
Lambert [9, Chapter 3]. Lambert proposes an algebra of circulants, but his circulants are padded
with additional zeros to better approximate a finite impulse response operator. He uses it to study
blind deconvolution problems [10]. As he observed, the relationship with matrices implies that many
standard decompositions and techniques from real or complex-valued matrix algebra carry over to
the circulant algebra.

Furthermore, the circulant algebra is a particular instance of a matrix over a ring, a long studied
generalization of linear algebra [11, 12]. Prior work focuses on Roth theorems for the equation
AX � XB D C [13], generalized inverses [14], completion and controllability problems [15],
matrices over the ring of integers for computer algebra systems [16], and transfer functions and
linear dynamic systems [17]. Finally, see Gustafson [18] for some interesting relationships between
vectors space theory and module theory. A recent proposal by Navasca et al. [19] extends many of
Kilmer et al. [1] operations to more general algebraic structures.

More generally, multiway arrays, tensors, and hypermatrices are a burgeoning area of research;
see Kolda and Bader [20] for a recent comprehensive survey. Some of the major themes are mul-
tilinear operations, fitting multilinear models, and multilinear generalizations of eigenvalues [21].
Savas and Eldén [22, 23] proposed a different generalization of Krylov methods for a tensor prod-
uct of vector spaces and compute bases for each of the constituent spaces. This results in a tensor
Krylov decomposition, which is fundamentally different from the standard matrix case. Even though
our paper utilizes a Krylov method, namely the Arnoldi process, the similarity with Savas and Eldén
is incidental as we treat a tensor as a map to a block-circulant matrix. In this sense, our paper is more
closely related to Brazell et al. [24], who study the general setting of interpreting tensor data as a
matrix. We study the problem when the map induces a circulant structure specifically and deal with
some of the nonuniqueness issues that arise.

Our formulation is also closely related to block-circulant matrices, which have been studied
for quite some time. See Tee [25] and the references therein for further historical and mathe-
matical context on circulant matrices. In particular, Baker [26] gives a procedure for the SVD
of a block circulant that involves using the fast Fourier transform to decouple the problem into
independent sub-problems, just as we shall do throughout this manuscript. Other work in this
vein includes solving block-circulant systems that arise in the theory of antenna arrays, [27–29].
Rezghi and Eldén [30] study circulant structure in tensors and how this can be diagonalized via an
appropriate fast Fourier transform.

2. OPERATIONS WITH THE POWER METHOD

In the introduction, we provided the basic set of operations in the circulant algebra
(Equations (1)–(5)). We begin this section by stating the standard power method and then follow
by deriving the operations it requires.

LetA 2Rn�n and let x 2Rn be an arbitrary starting vector. Then the power method proceeds by
repeated applications of A; see Figure 1 for a standard algorithmic description. (Line 6 checks for
convergence and is one of several possible stopping criteria.) Under mild and well-known conditions
(see Stewart [31]), this iteration converges to the eigenvector with the largest magnitude eigenvalue.

Not all of the operations in Figure 1 are defined for the circulant algebra. In the first line, we
use the norm kx.0/k that returns a scalar in R. We also use the scalar inverse ˛�1. The next oper-
ation is the sign function for a scalar. Let us define these operations, in order of their complexity.
In the next section, we will reinterpret these operations in light of the relationships between the fast

Copyright © 2012 John Wiley & Sons, Ltd. Numer. Linear Algebra Appl. 2013; 20:809–831
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Figure 1. The power method for a matrix A 2Rn�n.

Fourier transform and circulant matrices. This will help illuminate a few additional properties of
these operations and will let us state an ordering for elements.

2.1. The scalar inverse

We begin with the scalar inverse. Recall that all operations between scalars behave like circulant
matrices. Thus, the inverse of ˛ 2Kk is

˛�1$ circ.˛/�1.

The matrix circ.˛/�1 is also circulant [32]. If circ.˛/ is singular, then the inverse may not exist.
This issue arises frequently in studies of the algebra [3, 8]. Our approach in this event is to use
the pseudo-inverse of the matrix, which would suffice for the power method and Arnoldi method
addressed in this paper.

2.2. Scalar functions and the angle function

Other scalar functions are also functions of a matrix (Higham [33]). Let f be a function, then

f .˛/$ f .circ.˛//,

where the right-hand side is the same function applied to a matrix. (Note that it is not the function
applied to the matrix element wise.)

The sign function for a matrix is a special case. As explained in Higham [33], the sign function
applied to a complex value is the sign of the real-valued part. We wish to use a related con-
cept that generalizes the real-valued sign that we term ‘angle’. Given a complex value re{� , then
angle.re{� /D e{� . For real or complex numbers x, we then have

angle.x/jxj D x.

Thus, we define

angle.˛/$ circ.abs.˛//�1circ.˛/.

2.3. Inner products, norms, and conjugates

We now proceed to define a norm. The norm of a vector in Kn
k

produces a scalar in Kk :

kxk$ .circ.x/�circ.x//1=2 D

 
nX
iD1

circ.xi /
�circ.xi /

!1=2
.

Copyright © 2012 John Wiley & Sons, Ltd. Numer. Linear Algebra Appl. 2013; 20:809–831
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For a standard vector x 2 Cn, the norm kxk D
p

x�x. This definition, in turn, follows from the
standard inner product attached to the vector space Cn. As we shall see, our definition has a similar
interpretation. The inner product implied by our definition is

hx, yi $ circ.y/�circ.x/.

Additionally, this definition implies that the conjugate operation in the circulant algebra corresponds
to the transpose of the circulant matrix

˛$ circ.˛/�.

With this conjugate, our inner product satisfies two of the standard properties: conjugate symme-
try hx, yi D hy, xi and linearity h˛ ı x, yi D ˛ ı hx, yi. The notion of positive definiteness is more
intricate, and we delay that discussion until after introducing a decoupling technique using the fast
Fourier transform in the following section. Then in Section 3.3, we use positive definiteness to
demonstrate a Cauchy–Schwarz inequality, which in turn provides a triangle inequality for the norm.

3. OPERATIONS WITH THE FAST FOURIER TRANSFORM

In Section 2, we explained the basic operations of the circulant algebra as operations between
matrices. All of these matrices consisted of circulant blocks. In this section, we show how to
accelerate these operations by exploiting the relationship between the fast Fourier transform and
circulant matrices.

Let C be a k�k circulant matrix. Then, the eigenvector matrix of C is given by the k�k discrete
Fourier transform matrix F , where

Fij D
1
p
k
!.i�1/.j�1/

and ! D e2�{=k . This matrix is complex symmetric, F T D F , and unitary, F � D F �1. Thus,
C D FDF �, D D diag.�1, : : : ,�k/. Recall that multiplying a vector by F or F � can be
accomplished via the fast Fourier transform in O.k log k/ time instead of O.k2/ for the typical
matrix–vector product algorithm. Also, computing the matrix D can be done in time O.k log k/
as well.

To express our operations, we define a new transformation, the ‘Circulant Fourier Transform’ or
cft. Formally, cft W ˛ 2Kk 7!Ck�k and its inverse icft WCk�k 7!Kk as follows:

cft.˛/�

2
64 Ǫ1 . . .

Ǫk

3
75D F �circ.˛/F , icft

0
B@
2
64 Ǫ1 . . .

Ǫk

3
75
1
CA� ˛$ F cft.˛/F �,

where Ǫj are the eigenvalues of circ.˛/ as produced in the Fourier transform order. These trans-
formations satisfy icft.cft.˛//D ˛ and provide a convenient way of moving between operations
in Kk to the more familiar environment of diagonal matrices in Ck�k .

The cft and icft transformations are extended to matrices and vectors over Kk differ-
ently than the circ operation we saw before. Observe that cft applied ‘element wise’ to the
circ.A/ matrix produces a matrix of diagonal blocks. In our extension of the cft routine, we
perform an additional permutation to expose block-diagonal structure from these diagonal blocks.

Copyright © 2012 John Wiley & Sons, Ltd. Numer. Linear Algebra Appl. 2013; 20:809–831
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Figure 2. The sequence of transformations in our cft operation. Given a circulant A, we convert it into a
matrix by circ.A/. The color of the circles in the figure emphasizes the circulant structure and not equality
between blocks. In the third figure, we diagonalize each circulant by using the Fourier transform. The pattern
of eigenvalues is represented by squares. Here, we color the squares to show the reordering induced by the

permutation at the final step of the cft operation.

This permutation PmAP
T
n transforms an mk � nk matrix of k � k diagonal blocks into a block

diagonal mk �nk with m�n size blocks. It is also known as a stride permutation matrix [34]. The
construction of Pm, expressed in MATLAB code, is

p = reshape(1:m*k,k,m)’;
Pm = sparse(1:m*k,p(:),1,m*k,m*k).

The construction for Pn is identical. In Figure 2, we illustrate the overall transformation process
that extends cft to matrices and vectors.

Algebraically, the cft operation for a matrix A 2Km�n
k

is

cft.A/DPm.Im˝F
�/circ.A/.In˝F /P

T
n ,

where Pm and Pn are the permutation matrices introduced previously. We can equivalently write
this directly in terms of the eigenvalues of each of the circulant blocks of circ.A/:

cft.A/�

2
64
OA1

. . .
OAk

3
75 , OAj D

2
4 �

1,1
j

::: �
1,n
j

...
. . .

...
�
m,1
j

::: �
m,n
j

3
5 ,

where �r ,s
1 , : : : ,�r ,s

k
are the diagonal elements of cft.Ar ,s/. The inverse operation icft takes a

block-diagonal matrix and returns the matrix in Km�n
k

:

icft.A/$ .Im˝F /P
T
mAPn.In˝F

�/.

Let us close this discussion by providing a concrete example of this operation.

Example 1

Let A D

� ˚
2 3 1

� ˚
8 �2 0

�˚
�2 0 2

� ˚
3 1 1

� �
. The result of the circ and cft operations, as

Copyright © 2012 John Wiley & Sons, Ltd. Numer. Linear Algebra Appl. 2013; 20:809–831
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illustrated in Figure 2, are

3.1. Operations

We now briefly illustrate how the cft accelerates and simplifies many operations. Let ˛,ˇ 2 Kk .
Note that

˛C ˇ D icft.cft.˛/C cft.ˇ//, and

˛ ı ˇ D icft.cft.˛/ cft.ˇ//.

In the Fourier space—the output of the cft operation—these operations are bothO.k/ time because
they occur between diagonal matrices. Because of the linearity of the cft operation, arbitrary
sequences of operations in the Fourier space transform back seamlessly, for instance

.˛C ˇ/ ı .˛C ˇ/ ı : : : ı .˛C ˇ/„ ƒ‚ …
j times

D icft..cft.˛/C cft.ˇ//j /.

But even more importantly, these simplifications generalize to matrix-based operations too.
For example,

A ı xD icft.cft.A/ cft.x//.

In fact, in the Fourier space, this system is a series of independent matrix–vector products:

cft.A/ cft.x/D

2
64
OA1

. . .
OAk

3
75
2
64 Ox1 . . .

Oxk

3
75D

2
64
OA1 Ox1

. . .
OAk Oxk

3
75 .

Here, we have again used OAj and Oxj to denote the blocks of Fourier coefficients or equivalently,
circulant eigenvalues. The rest of the paper frequently uses this convention and shorthand where it
is clear from context. This formulation takes

O.mnk log kC nk log k/„ ƒ‚ …
cft and icft

CO.kmn/„ ƒ‚ …
matvecs

operations instead of O.mnk2/ using the circ formulation in the previous section.

Copyright © 2012 John Wiley & Sons, Ltd. Numer. Linear Algebra Appl. 2013; 20:809–831
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More operations are simplified in the Fourier space too. Let cft.˛/ D diag
�
Ǫ1, : : : , Ǫk

�
.

Because the Ǫj values are the eigenvalues of circ.˛/, the following functions simplify:

abs.˛/D icft.diagŒj Ǫ1j, : : : , j Ǫkj�/,

˛ D icft.diagŒ Ǫ1, : : : , Ǫk�/D icft.cft.˛/�/, and

angle.˛/D icft.diagŒ Ǫ1=j Ǫ1j, : : : , Ǫk=j Ǫkj�/.

Complex values in the CFT

A small concern with the icft operation is that it may produce complex-valued elements in Kk .
Note that when the output of a sequence of circulant operations produces a real-valued circulant,
then the output of icft is also real valued. In other words, there is no problem working in Fourier
space instead of the real-valued circulant space. This fact can be formally verified by first formally
stating the conditions under which icft produces real-valued circulants (icft.D/ is real if and
only if F 2DF 2 DD�, see Davis [32]), and then checking that the operations in the Fourier space
do not alter this condition.

3.2. Properties

Representations in Fourier space are convenient for illustrating some properties of these operations.

Proposition 2
The matrix circ.angle.˛// is orthogonal.

Proof
We have

circ.angle.˛//�circ.angle.˛//$

angle.˛/ ı angle.˛/D icft

0
B@
2
64 Ǫ1 Ǫ1=j Ǫ1j

2

. . .

Ǫk Ǫk=j Ǫkj
2

3
75
1
CAD 1.

�

Additionally, the Fourier space is an easy place to understand spanning sets and bases in Km
k

, as
the following proposition shows.

Proposition 3
Let X 2Km�n

k
. Then X spans Km

k
if and only if circ.X/ and cft.X/ have rank km. Also, X is

a basis if and only if circ.X/ and cft.X/ are invertible.

Proof
First, note that rank.cft.X// D rank.circ.X// because cft is a similarity transformation
applied to circ. It suffices to show this result for cft.X/ then. Now, consider yDX ı a:

cft.y/D cft.X/cft.a/I2
64 Oy1 . . .

Oyk

3
75D

2
64
OX1

. . .
OXk

3
75
2
64 Oa1 . . .

Oak

3
75 .

Thus, if there is a y that is feasible, then all OX j 2Cm�n must be rankm. Conversely, if cft.X/ has

rank km, then each OX j must have rank m, and any y is feasible. The result about the basis follows
from an analogous argument. �

Copyright © 2012 John Wiley & Sons, Ltd. Numer. Linear Algebra Appl. 2013; 20:809–831
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3.3. Inner products, norms, and ordering

We now return to our inner product and norm to elaborate on the positive definiteness and the
triangle inequality. In terms of the Fourier transform,

hx, yi D icft.cft.y/�cft.x//.

If we write this in terms of the blocks of Fourier coefficients, then

cft.x/�cft.y/D

2
64 Oy

�
1 Ox1

. . .
Oy�
k
Ox
k

3
75 .

For y D x, each diagonal term has the form Ox�j Oxj > 0. Consequently, we do consider this a
positive semidefinite inner product because the output circ.hx, yi/ is a matrix with nonnegative
eigenvalues. This idea motivates the following definition of element ordering.

Definition 4 (Ordering)
Let ˛,ˇ 2Kk . We write

˛ 6 ˇ when diag.cft.˛//6 diag.cft.ˇ// element wise, and

˛ < ˇ when diag.cft.˛// < diag.cft.ˇ// element wise.

We now show that our inner product satisfies the Cauchy–Schwarz inequality:

abshx, yi6 kxk ı kyk.

In Fourier space, this fact holds because j Oy�j Oxj j 6 k Oxj kk Oyj k follows from the standard Cauchy–
Schwarz inequality. Using this inequality, we find that our norm satisfies the triangle inequality:

kxC yk2 D hxC y, xC yi6 hx, xi C 2 ı kxk ı kykC hy, yi D .kxkC kyk/2.

In this expression, the constant 2 is twice the multiplicative identify, that is, 2D f2 0 : : : 0g.

4. EIGENVALUES AND EIGENVECTORS

With the results of the previous few sections, we can now state and analyze an eigenvalue problem
in circulant algebra. Braman [3] investigated these problems already and proposed a decomposition
approach to compute the eigenvalues. We offer an extended analysis that addresses a few additional
aspects. Specifically, we focus on a canonical set of eigenpairs.

Recall that eigenvalues of matrices are the roots of the characteristic polynomial det.A��I/D 0.
Now, let A 2Kn�n

k
and � 2Kk . The eigenvalue problem does not change:

det.A � � ı I/D 0.

(As an aside, note that the standard properties of the determinant hold for any matrix over a com-
mutative ring with identity; in particular, the Cayley–Hamilton theorem holds in this algebra.) The
existence of an eigenvalue implies the existence of a corresponding eigenvector x 2 Kn

k
. Thus, an

eigenvalue and eigenvector pair in this algebra is

A ı xD � ı x.

Just like the matrix case, these eigenvectors can be rescaled by any constant ˛ 2Kk : A ı ˛ ı xD
� ı ˛ ı x. In terms of normalization, note that kˇ ı xk D kxk if circ.ˇ/ is an orthogonal circulant.
This follows most easily by noting that

kˇ ı xk$

 
nX
iD1

circ.ˇ/�circ.xi /�circ.xi /circ.ˇ/

!1=2
$kxk,

Copyright © 2012 John Wiley & Sons, Ltd. Numer. Linear Algebra Appl. 2013; 20:809–831
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because circulant matrices commute and circ.ˇ/ is orthogonal by construction. For this reason,
we consider orthogonal circulant matrices the analogs of angles or signs, and normalized eigenvec-
tors in the circulant algebra can be rescaled by them. (Recall that we showed that angle.˛/ is an
orthogonal circulant in Section 3.)

The Fourier transform offers a convenient decoupling procedure to compute eigenvalues and
eigenvectors, as observed by Braman [3]. Let A 2Kn�n

k
and let x 2Kn

k
and � be an eigenvalue and

eigenvector pair: A ı xD x ı � and det.A � � ı I/D 0. Then it is straightforward to show that the
Fourier transforms cft.A/, cft.x/, and cft.�/ decouple as follows:

cft.A ı x/D cft.x ı �/I

cft.A/ cft.x/D cft.x/ cft.�/I2
64
OA1

. . .
OAk

3
75
2
64 Ox1 . . .

Oxk

3
75D

2
64 Ox1 . . .

Oxk

3
75
2
64
O�1

. . .
O�k

3
75 I

2
64
OA1 Ox1

. . .
OAk Oxk

3
75D

2
64
O�1 Ox1

. . .
O�k Oxk

3
75 ,

where O�j 2 �. OAj / and Oxj 6D 0. The last equation follows because

cft.det.A � � ı I//D diagŒdet. OA1 � O�1I/, : : : , det. OAk � O�kI/�D 0.

The decoupling procedure we just described shows that any eigenvalue or eigenvector of A must
decompose into individual eigenvalues or eigenvectors of the cft-transformed problem. This illus-
trates a fundamental difference from the standard matrix algebra. For standard matrices, requiring
det.A � �I/ D 0 and finding a nonzero solution x for Ax D �x are equivalent. In contrast, the
determinant and the eigenvector equations are not equivalent in the circulant algebra; A ı xD x ı �
actually has an infinite number of solutions �. For instance, set Ox1, O�1 to be an eigenpair of OA1 and
Oxj D 0 for j > 1, then any value for O�j solvesA ıxD xı�. However, only a few of these solutions
also satisfy det.A � � ı I/D 0.

Eigenvalues of matrices in Kn�n
k

have some interesting properties. Most notably, a matrix may
have more than n eigenvalues. As a special case, the diagonal elements of a matrix are not
necessarily the only eigenvalues. We demonstrate these properties with an example.

Example 5
For the diagonal matrix �

f2 3 1g f0 0 0g
f0 0 0g f3 1 1g

�
,

we have

OA1 D

�
6 0

0 5

�
, OA2 D

�
�{
p
3 0

0 2

�
, OA3 D

�
{
p
3 0

0 2

�
.

Thus,

�1 D icft.diagŒ6 2 2�/D .1=3/f10 4 4g �2 D icft.diagŒ5 � {
p
3 {
p
3�/D .1=3/f5 2 2g

�3 D icft.diagŒ6 � {
p
3 {
p
3�/D f2 3 1g �4 D icft.diagŒ5 2 2�/D .1=3/f3 1 1g.

The corresponding eigenvectors are

x1 D
�

f1=3 1=3 1=3g
f2=3 � 1=3 � 1=3g

�
I x2 D

�
f2=3 � 1=3 � 1=3g
f1=3 1=3 1=3g

�
I

x3 D
�
f1 0 0g
f0 0 0g

�
I x4 D

�
f0 0 0g
f1 0 0g

�
.
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There are still more eigenvalues, however. The aforementioned four eigenvalues all correspond
to elements in Kk with real-valued entries. We can combine the eigenvalues of the OAj ’s to produce
complex-valued elements in Kk that are also eigenvalues. These are

�5 D icft.diagŒ6 � {
p
3 2�/ �6 D icft.diagŒ6 2 {

p
3�/

�7 D icft.diagŒ5 � {
p
3 2�/ �8 D icft.diagŒ5 2 {

p
3�/.

For completeness and further clarity, let us extend this example a bit by presenting also the

eigenvalues of the nondiagonal matrix from Example 1. Let A D

�
f2 3 1g f8 � 2 0g
f�2 0 2g f3 1 1g

�
.

The cft produces

OA1 D

�
6 6

0 5

�
, OA2 D

�
�
p
3 �9C {

p
3

�3C {
p
3 2

�
, OA3 D

�
{
p
3 �9� {

p
3

�3C {
p
3 2

�
.

The numerical eigenvalues of OA1 are f6, 5g, of OA2 are f�0.0899C 6.4282{, 2.0899� 4.6962{g, and

of OA3 are f�0.0899� 6.4282{, 2.0899C 4.6962{g. The real-valued eigenvalues of A are

�1 D f1.9401 � 1.6814 5.7413g �2 D f3.0599 3.6814 � 1.7413g

�3 D f3.3933 4.0147 � 1.4080g �4 D f1.6067 � 2.0147 5.4080g.

The complex-valued eigenvalues of A are

�5 D f4.6966� 1.5654{, �0.7040C 1.9114{, 2.0073� 0.3461{g

�6 D f3.6367C 2.1427{, 3.0373C 0.3980{, �0.6740� 2.5407{g

�7 D f4.3633� 1.5654{, �1.0373C 1.9114{, 1.6740� 0.3461{g

�8 D f3.3034C 2.1427{, 2.7040C 0.3980{, �1.0073� 2.5407{g.

We now count the number of unique eigenvalues and eigenvectors, using the decoupling proce-
dure in the Fourier space. To simplify the discussion, let us only consider the case where each OAj
has simple eigenvalues. Consider an A 2 Kn�n

k
with this property, and let mj be the number of

unique eigenvalues and eigenvectors of OAj . Then the number of unique eigenvalues of A is given

by the number of unique solutions to det.A��ıI/D 0 which is
Qk
jD1mj . The number of unique

eigenvectors (up to normalization) is given by the number of unique solutions to A ı x D x ı �,
which is also

Qk
jD1mj .

This result shows there are at most nk eigenvalues if � 2 Kk is allowed to be complex valued,
even when A 2 Kk is real valued. If A 2 Kk is real valued, then there are at most nd.kC1/=2e

‘real’ eigenvalues. For this result, note that icft.diagŒ˛1 : : : ˛k�/ is real valued if and only
if diagŒ˛1 : : : ˛k�

� D F 2diagŒ˛1 : : : ˛k�F
2 [32], where F is the Fourier transform matrix.

This implies ˛1 is real valued, and ˛j D ˛k�jC1. Applying this restriction reduces the feasible
combinations of eigenvalues to nd.kC1/=2e.

Given that there are so many eigenvalues and vectors, are all of them necessary to describe A?
We now show this is not the case by making a few definitions to clarify the discussion.

Definition 6
Let A 2 Kn�n

k
. A canonical set of eigenvalues and eigenvectors is a set of minimum size, ordered

such that abs.�1/ > abs.�2/ > : : : > abs.�k/, which contains the information to reproduce any

eigenvalue or eigenvector of A.
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In the diagonal matrix from Example 5, the sets f.�1, x1/, .�2, x2/g, f.�3, x3/, .�4, x4/g, and
f.�1, x1/, .�3, x3/, .�4, x4/g contain all the information to reproduce any eigenpair, whereas the
set f.�1, x1/, .�3, x3/g does not (it does not contain the eigenvalue 5 of OA1). In this case, the only
canonical set is f.�1, x1/, .�2, x2/g. This occurs because, by a simple counting argument, a canon-
ical set must have at least two eigenvalues; thus, the set is of minimum size. The choice of �1 and
�2 is given by the ordering condition. Among all the size 2 sets with all the information, this is the
only one with the property that abs.�1/> abs.�2/.

Theorem 7 (Unique canonical decomposition)
Let A 2 Kn�n

k
where each OAj in the cft.A/ matrix has distinct eigenvalues with distinct mag-

nitudes. Then A has a unique canonical set of n eigenvalues and eigenvectors. This canonical set
corresponds to a basis of n eigenvectors, yielding an eigendecomposition

A DX ıƒ ıX�1.

Proof
Because all of the eigenvalues of each OAj are distinct, with distinct magnitudes, there are nk distinct
numbers. This implies that any canonical set must have at least n eigenvalues.

Let O�.i/j be the ith eigenvalue of OAj ordered such that j O�.1/j j > j
O�
.2/
j j > : : : > j

O�
.n/
j j. Then �i D

icft
�

diag
h
O�
.i/
1 , : : : , O�.i/

k

i�
is a canonical set of eigenvalues. We now show that this set consti-

tutes an eigenbasis. Let OAj D OXj Oƒj OX
�1

j be the eigendecomposition using the magnitude ordering

mentioned previously. Then X D icft.diagŒ OX1, : : : , OXk�/ and ƒD icft.diagŒ Oƒ1, : : : , Oƒk�/
is an eigenbasis because the matrix X satisfies the properties of a basis from Theorem 3. Note that
ƒ
i ,i D �i .
Finally, we show that the set is unique. In any canonical set, abs.�1/ > abs.�i / for i > 1. In

the Fourier space, this implies j O�.1/j j > j O�
.i/
j j. Because all of the values j O�.i/j j are unique, there is

no choice for O�.1/j in a canonical set and we have j O�.1/j j > j
O�
.i/
j j, i > 1. Consequently, �1 is unique.

Repeating this argument on the remaining choices for �i shows that the entire set is unique. �

Remark 1
If OAj has distinct eigenvalues but they do not have distinct magnitudes, then A has an eigenbasis
but the canonical set may not be unique, because OAj may have two distinct eigenvalues with the
same magnitude.

Next, we show that the eigendecomposition is real valued under a surprisingly mild condition.

Theorem 8
Let A 2Kn�n

k
be real valued with diagonalizable OAj matrices. If k is odd, then the eigendecompo-

sition X ıƒ ıX�1 is real valued if and only if OA1 has real-valued eigenvalues. If k is even, then
X ıƒ ıX�1 is real valued if and only if OA1 and OAk=2C1 have real-valued eigenvalues.

Proof
First, if A has a real-valued eigendecomposition, then we have that OX1 is real and also that
OXk=2C1 is real when k is even. Likewise, Oƒ1 is real and Oƒk=2C1 is real when k is even. Thus, OA1

(and also OAk=2C1 when k is even) have real-valued eigenvalues and vectors.
When OA1 (and OAk=2C1 for k even) have real-valued eigenvalues and vectors, then note that

we can choose eigenvalues and eigenvectors of the other matrices OAj , which may be complex,
in complex conjugate pairs to satisfy the condition for a real-valued inverse Fourier transforms.

This happens because when A is real, then OA1 is real and OAj D OAk�jC2 by the properties of

the Fourier transform [32]. Thus, for each eigenpair O�j , Oxj of OAj , the pair O�j , Oxj is an eigenpair
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for OAk�jC2. Consequently, if we always choose these complex conjugate pairs for all j besides
j D 1 (and j D k=2 C 1 for k even), then the result of the inverse Fourier transform will be
real valued. �

Finally, we note that if the scalars of a matrix are padded with zeros to transform them into
the circulant algebra, then the canonical set of eigenvalues are nothing but tuples that consist of
the eigenvalues of the original matrix in the first entry, padded with zeros as well. To justify this
observation, let A 2 Kn�n

k
have Ai ,j D fGi ,j , 0, : : : , 0g for a matrix G 2 Rn�n. Also, let

�1, : : : ,�m .m 6 n/ be the eigenvalues of G ordered such that j�1j > j�2j > � � � > j�mj. Then
cft.Ai ,j / D diagŒGi ,j , : : : , Gi ,j � and thus OAj D G for all j . Thus, we only need to combine

the same m eigenvalues of each OAj to construct eigenvalues of A. For the eigenvalues �i , we have
cft.�/ D diagŒ�i , : : : , �i �; thus, the given set is canonical because of the same argument used in
the proof of Theorem 7.

We end this section by noting that much of the aforementioned analysis can be generalized to
nonsimple eigenvalues and vectors using the Jordan canonical form of the OAj matrices.

5. THE POWER METHOD AND THE ARNOLDI METHOD

In what follows, we show that the power method in the circulant algebra computes the eigenvalue
�1 in the canonical set of eigenvalues. This result shows how the circulant algebra matches the
behavior of the standard power method. As part of our analysis, we show that the power method
decouples into k independent power iterations in Fourier space and is equivalent to a subspace itera-
tion method. Second, we demonstrate the Arnoldi method in the circulant algebra. In Fourier space,
the Arnoldi method is also equivalent to the Arnoldi algorithm on independent problems, and it also
corresponds to a particular block Arnoldi procedure.

5.1. The power method

Please see the left half of Figure 3 for the sequence of operations in the power method in the circu-
lant algebra. In fact, it is not too different from the standard power method in Figure 1. We replace
Ax with A ı x and use the norm and inverse from Section 2. We will return to the convergence cri-
teria shortly. As we show next, the algorithm runs k independent power methods in Fourier space.
Thus, the right half of Figure 3 shows the equivalent operations in Fourier space.

Figure 3. The power method in the circulant algebra (left) and the power method in the circulant algebra
after transformation with the fast Fourier transform (right). We address convergence criteria in Section 5.1.
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To analyze the power method, consider the key iterative operation in the power method when
transformed into Fourier space:

cft.A ı x ı .kA ı xk/�1/

D cft.A/cft.x/.cft.x/�cft.x//�1=2

D

2
64
OA1 Ox1

. . .
OAk Oxk

3
75
0
B@
2
64
OA1 Ox1

. . .
OAk Oxk

3
75
�2
64
OA1 Ox1

. . .
OAk Oxk

3
75
1
CA
�1=2

.

Now,

0
B@
2
64
OA1 Ox1

. . .
OAk Oxk

3
75
�2
64
OA1 Ox1

. . .
OAk Oxk

3
75
1
CA
�1=2

D

2
64 Ox

�
1
OA
�

1
OA1 Ox1

. . .

Ox�
k
OA
�

k
OAk Oxk

3
75
�1=2

D

2
64 k

OA1 Ox1k�1

. . .

k OAk Oxkk�1

3
75 .

Thus,

cft.A ı x ı .kA ı xk/�1/D

2
64
OA1 Ox1=k OA1 Ox1k

. . .
OAk Oxk=k OA1 Ox1k

3
75 .

The key iterative operation, A ı x ı .kA ı xk/�1, corresponds to one step of the standard power
method on each matrix OAj . From this derivation, we arrive at the following theorem, whose proof
follows immediately from the convergence proof of the power method for a matrix.

Theorem 9
Let A 2 Kn�n

k
have a canonical set of eigenvalues �1, : : : ,�n where j�1j > j�2j, then the power

method in the circulant algebra convergences to an eigenvector x1 with eigenvalue �1.

A bit tangentially, an eigenpair in the Fourier space is a simple instance of a multivariate
eigenvalue problem [35]. The general multivariate eigenvalue problem isX

j

Ai ,j xj D �ixi , i D 1, : : : ,

whereas we study the same system, albeit diagonal. Chu and Watterson [35] did study a power
method for the more general problem and showed local convergence; however, our diagonal
situation is sufficiently simple for us to state stronger results.

Convergence criteria
A simple measure such as kxk � xk�1k � � , with � D f� 0 : : : 0g, will not detect convergence. As
mentioned in the description of the standard power method in Figure 1, this test can fail when the
eigenvector changes angle. Here, we have the more general notion of an angle for each element, and
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eigenvectors are unique up to a choice of angle. Thus, we first normalize angles before comparing
the iterates. We use the convergence criteria				angle �x.k/1

��1
ı x.k/ � angle

�
x.k�1/1

��1
ı x.k�1/

				< � . (6)

In the Fourier space, this choice requires that all of the independent problems have converged to a
tolerance of � , which is a viable practical choice. An alternative convergence criterion is to terminate
when the eigenvalue stops changing, although this may occur significantly before the eigenvector
has converged.

Subspace iteration
We now show that the power method is equivalent to subspace iteration in Fourier space. Subspace
iteration is also known as ‘orthogonal iteration’ or the ‘block-power method’. Given a starting block
of vectors X0, the iteration is

Y  AXk , XkC1,RkC1 D qr.Y /.

On the surface, there is nothing to relate this iteration to our power method, even in Fourier
space. The relationship, however, follows because all of our operations in Fourier space occur with

block-diagonal matrices. Note that for a block-diagonal matrix of vectors, which is what OX
k

is, the
QR factorization just normalizes each column. In other words, the result is a diagonal matrix R.
This simplification shows that Steps 5 and 6 in the Fourier space algorithm are equivalent to the QR
factorization in subspace iteration.

Breakdown
One problem with this iterative approach is that it can encounter ‘zero divisors’ as scalars when
running these algorithms. These occur when the matrices in Fourier space are not invertible. We
have not explicitly addressed this situation and note that the same issues arise in block methods
when some of the quantities become singular. The analogy with the block method may provide
an appropriate solution. For example, if the scalar ˛k is a zero divisor, then we could use the QR

factorization of OY
k

—as suggested by the equivalence with subspace iteration—instead.

5.2. The Arnoldi process

The Arnoldi method is a cornerstone of modern matrix computations. Let A be an n � n matrix
with real-valued entries. Then the Arnoldi method is a technique to build an orthogonal basis for the
Krylov subspace

Kt .A, v/D span
˚
v,Av, : : : ,At�1v

�
,

where v is an initial vector. Instead of using this power basis, the Arnoldi process derives a set of
orthogonal vectors that span the same space when computed with exact arithmetic. The standard
method is presented in Figure 4(a). From this procedure, we have the Arnoldi decomposition of
a matrix:

AQt DQtC1H tC1,t

where Qt is an n � t matrix and H tC1,t is a .t C 1/ � t upper Hessenberg matrix. Arnoldi’s
orthogonal subspaces Q enable efficient algorithms for both solving large scale linear systems [5]
and computing eigenvalues and eigenvectors [7].

With the use of our repertoire of operations, the Arnoldi method in the circulant algebra is
presented in Figure 4(b). The circulant Arnoldi process decoupled via the cft is also shown in
Figure 4(c).

We make three observations here. First, the decoupled (cft) circulant Arnoldi process is equiv-
alent to individual Arnoldi processes on each matrix OAj . This follows by a similar analysis used
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Figure 4. Arnoldi methods. Algorithm (a) shows the standard Arnoldi process. Algorithm (b) shows the
Arnoldi process in the circulant algebra, and Algorithm (c) shows the set of operations in (b) but expressed

in the Fourier space.

to show the decoupling result about the power method. The verification of this fact for the Arnoldi
iteration is a bit more tedious, and thus, we omit this analysis. Second, the same decoupled pro-
cess is equivalent to a block Arnoldi process. This also follows for the same reason the equivalent
result held for the power method: the QR factorization of a block-diagonal matrix of vectors is just
a normalization of each vector. Third, we produce an Arnoldi factorization:

A ıQ
t
DQ

tC1
ıH

tC1,t .

In fact, this outcome is a corollary of the first property and follows from applying icft to the same
analysis.

This discussion raises an interesting question, why iterate on all problems simultaneously? One
case where this is advantageous is with sparse problems, and we return to this issue in the concluding
discussion (Section 8).

6. A MATLAB PACKAGE

The MATLAB environment is a convenient playground for algorithms involving matrices. We have
extended it with a new class implementing the circulant algebra as a native MATLAB object. The
name of the resulting package and class is camat (circulant algebra matrix). Although we will
show some nontrivial examples of our package later, let us start with a small example to give the
flavor of how it works:

A = cazeros(2,2,3); % creates a camat type
A(1,1) = cascalar([2,3,1]); A(1,2) = cascalar([8,-2,0]);
A(2,1) = cascalar([-2,0,2]); A(2,2) = cascalar([3,1,1]);
eig(A) % compute eigenvalues as in Example 2.

The output, which matches the nondiagonal matrix in Example 5, is

ans =
(:,:,1) = % the first eigenvalue

1.9401
-1.6814
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5.7413
(:,:,2) = % the second eigenvalue

3.0599
3.6814

-1.7413

Internally, each elementA 2Km�n
k

is stored as a k�n�m array along with its cft transformed
data. Each scalar is stored by the k parameters defining it. To describe this storage, let us introduce
the notation

vec.˛/�

2
64 ˛1

...
˛k

3
75D circ.˛/ e1

to label the vector of k parameters explicitly. Thus, we store vec.˛/ for ˛ 2 Kk . This storage cor-
responds to storing each scalar Kk consecutively in memory. The matrix is then stored by rows. We
store the data for the diagonal elements of the cft transformed version in the same manner; that
is, diag.cft.˛// is stored as k consecutive complex-valued scalars. The organization of matrices
and vectors for the cft data is also by row. The reason we store the data by row is so we can take
advantage of MATLAB’s standard display operations.

At the moment, our implementation stores the elements in both the standard and Fourier trans-
formed space. The rationale behind this choice was to make it easy to investigate the results in this
manuscript. Because of the simplicity of the operations in the Fourier space, most of the functions
on camat objections use the Fourier coefficients to compute a result efficiently and then com-
pute the inverse Fourier transform for the vec representation. Hence, rather than incurring for the
Fourier transform and inverse Fourier transform cost for each operation, we only incur the cost of the
inverse transform. Because so few operations are easier in the standard space, we hope to eliminate
the standard vec storage in a future version of the code to accelerate it even further.

We now show how the overloaded operation eig works in Figure 5. This procedure, inspired
by Theorem 8, implements the process to get real-valued canonical eigenvalues and eigenvectors of

a real-valued matrix in the circulant algebra. The slice Af(j,:,:) is the matrix OA
T

j . Here, the
real-valued transpose results from the storage-by-rows instead of the storage-by-columns. The code
proceeds by computing the eigendecomposition of each OAj with a special sort applied to produce
the canonical eigenvalues. After all of the eigendecompositions are finished, we need to transpose
their output. Then it feeds them to the ifft function to generate the data in vec form.

Figure 5. The implementation of the eigenvalue computation in our package.
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Figure 6. The implementation of the power method using our package.

In a similar manner, we overloaded the standard assignment and indexing operations, for
example, a = A(i,j); A(1,1) = a; the standard Matlab arithmetic operations +, -, *,
/,; and the functions abs, angle, norm, conj, diag, eig, hess, mag, norm,
numel, qr, rank, size, sqrt, svd.

All of these operations have been mentioned or are self explanatory, except mag. It is a magnitude
function, and we discuss it in detail in Appendix A.

With the use of these overloaded operations, implementing the power method is straightforward,
see Figure 6. We note that the power method and Arnoldi methods can be further optimized by
implementing them directly in Fourier space. This remains as an item for future work.

7. NUMERICAL EXAMPLES

In this section, we present a numerical example using the code we described in Section 6. The
problem we consider is the Poisson equation on a regular grid with a mixture of periodic and fixed
boundary conditions:

��u.x,y/D f .x,y/ u.x, 0/D u.x, 1/,u.0,y/D y.1, y/D 0 .x,y/ 2 Œ0, 1�� Œ0, 1�.

Consider a uniform mesh and the standard five-point discrete Laplacian:

��u.xi ,yj /��u.xi�1,yj /� u.xi ,yj�1/C 4u.xi ,yj /� u.xiC1, yj /� u.xi ,yjC1/.

After applying the boundary conditions and organizing the unknowns of u in y-major order,
an approximate solution u is given by solving an N.N � 1/ � N.N � 1/ block-tridiagonal,
circulant-block system:2
66664
C �I

�I C
. . .

. . .
. . . �I
�I C

3
77775

„ ƒ‚ …
A

2
6664

u.x1, �/
u.x2, �/

...
u.xN�1, �/

3
7775

„ ƒ‚ …
u

D

2
6664

f.x1, �/
f.x2, �/

...
f.xN�1, �/

3
7775

„ ƒ‚ …
f

, C D

2
66664
4 �1 �1

�1 4
. . .

. . .
. . . �1

�1 �1 4

3
77775

„ ƒ‚ …
N�N

,

that is, AuD f. Because of the circulant-block structure, this system is equivalent to

A ı uD f

where A is an N � 1�N � 1 matrix of KN elements, u and f have compatible sizes, and

A D circ.A/ uD vec.u/ fD vec.f/.

We now investigate this matrix and linear system with N D 50.
We acknowledge that the problem in this form is easy to solve by other means, for example, by

fast Poisson solvers based on the Fourier decompositions, or multigrid methods. Our claim here is
not that the approach we take is faster; rather, it is an illustration of the theory from the previous
section. For this reason, we use a problem where the eigenvalues and eigenvectors are explicitly
available. Others have also considered a similar example [24, 30].
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7.1. The power method

We first study the behavior of the power method on A. The canonical eigenvalues of A are

�j D f4C 2 cos.j�=N/,�1, 0, : : : , 0,�1g.

To see this result, let �.�/D f�,�1, 0, : : : , 0,�1g. Then

.A � �.�/ ı I/D

2
66664
.4��/ ı 1 �1 ı 1

�1 ı 1 .4��/ ı 1
. . .

. . .
. . . �1 ı 1
�1 ı 1 .4��/ ı 1

3
77775 .

The canonical eigenvalues ofA��.�/ıI can be determined by choosing � to be an eigenvalue
of T D tridiag.�1, 4,�1/. These are given by setting �D 4C2 cos.j�=N/, where each choice
j D 1, : : : ,N � 1 produces a canonical eigenvalue �j . From these canonical eigenvalues, we can
estimate the convergence behavior of the power method. Recall that the algorithm runs independent
power methods in Fourier space. Consequently, these rates are given by O�2= O�1 for each matrix OAj .
To state these ratios compactly, let �1 D 4 C 2 cos.�=N/ and �2 D 4 C 2 cos.2�=N/; also, let
ıj D 2 cos.�� C 2�.j � 1/=N /. For N even,

cft.�1/D diagŒ�1C ı1, : : : , �1C ıN �

cft.�2/D diagŒ�2C ı1, : : : , �2C ıN �

Thus, the convergence ratio for OAj is .�2 C ıj /=.�1 C ıj /. The largest ratio (fastest converging)
corresponds to the smallest value of ıj , which is ı1. The smallest ratio (slowest converging) corre-
sponds to the largest value of ıj , which is ıN=2C1 in this case. (This choice will slightly change in
an obvious manner if N is odd.) Evaluating these ratios yields

min
j

�2. OAj /

�1. OAj /
D
�2C ı1

�1C ı1
D
2C 2 cos.2�=N/

2C 2 cos.�=N/
(fastest)

max
j

�2. OAj /

�1. OAj /
D
�2C ıN=2C1

�1C ıN=2C1
D
6C 2 cos.2�=N/

6C 2 cos.�=N/
(slowest).

On the basis of this analysis, we expect the eigenvector to converge linearly with the rate
6C2 cos.2�=N/
6C2 cos.�=N/ . By the standard theory for the power method, we expect the eigenvalues to converge

twice as fast.
Let 	 be the eigenvector change measure from Equation (6). In Figure 7, we first show how the

maximum absolute value of the Fourier coefficients in 	 behaves (the red line). Formally, this mea-
sure is kcft.	/k1, that is, the maximum element in the diagonal matrix. We also show how each
Fourier component of the eigenvalue converges to the Fourier components of �1 (each gray line).
That is, let �.i/ be the Rayleigh quotient x.i/

�
ıA ı x.i/ at the ith iteration. Then these lines are the

N values of diag.cft.abs.�.i/ � �1///. The results validate the theoretical predictions, and the
eigenvalue does indeed converge to �1.

7.2. The Arnoldi method

We next investigate computing u using the Arnoldi method applied to A. In this case, f .x,y/ to
be 1 at x25,y2 and 0 elsewhere. This corresponds to a single nonzero in vec.f/ with value 1=N 2.
With this right-hand side, the procedure we use is identical to an unoptimized generalized minimal
residual procedure. Given a t -step Arnoldi factorization starting from f, we estimate

u.t/ �Q
t
ı argmin

y2Kk

kH
tC1,t ı y� ˇ ı e1k,
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DOI: 10.1002/nla



828 D. F. GLEICH, C. GREIF AND J. M. VARAH

2000 4000 6000 8000
10

−15

10
−10

10
−5

100

iteration

m
ag

ni
tu

de

Eigenvalue Error

Eigenvector Change

Figure 7. The convergence behavior of the power method in the circulant algebra. The gray lines show the
error in the each eigenvalue in Fourier space. These curves track the predictions made on the basis of the
eigenvalues as discussed in the text. The red line shows the magnitude of the change in the eigenvector. We
use this as the stopping criteria. It also decays as predicted by the ratio of eigenvalues. The blue fit lines have

been visually adjusted to match the behavior in the convergence tail.
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Figure 8. The convergence behavior of a generalized minimal residual procedure using the circulant Arnoldi
process. The gray lines show the error in each Fourier component, and the red line shows the magnitude of
the residual. We observe poor convergence in one Fourier component, until the Arnoldi basis captures all of

the eigenvalues after N=2C 1D 26 iterations.

where ˇ D kfk. We solve the least-squares problem by solving each problem independently in the

Fourier space, as has become standard throughout this paper. Let 	D kf�A ıu.t/k. Figure 8 shows
(in red) the magnitude of the residual as a function of the Arnoldi factorization length t , which is
kcft.	/k1. The figure also shows (in gray) the magnitude of the error in the jth Fourier coefficient;

these lines are the N values of diag.cft.ku � u.t/k//. In Fourier space, these values measure the
error in each individual Arnoldi process.
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What the figure shows is that the residual suddenly converges at the 26th iteration. This is in fact
theoretically expected [36] because each matrix OAj hasN=2C1D 26 distinct eigenvalues. In terms
of measuring the individual errors (the gray lines), some converge rapidly, and some do not seem to
converge at all until the Arnoldi process completes at iteration 26. This exemplifies how the overall
behavior is governed by the worst behavior in any of the independent Arnoldi processes.

8. CONCLUSION AND FUTURE WORK

We have extended the circulant algebra, introduced by Kilmer et al. [1], with new operations to
pave the way for iterative algorithms, such as the power method and the Arnoldi iteration that we
introduced. These operations provided key tools to build a MATLAB package to investigate these
iterative algorithms for this paper. Furthermore, we used the fast Fourier transform to accelerate
these operations and as a key analysis tool for eigenvalues and eigenvectors. In the Fourier space,
the operations and algorithms decouple into individual problems. We observed this for the inner
product, eigenvalues, eigenvectors, the power method, and the Arnoldi iteration. We also found that
this decoupling explained the behavior in a numerical example.

Given that decoupling is such a powerful computational and analytical tool, a natural question
that arises is when it is useful to employ the original circulant formalism, rather than work in the
Fourier space. For dense computations, it is likely that working entirely in Fourier space is a superior
approach. However, for sparse computations, such as the system A ı u D f explored in Section 7,
such a conclusion is unwarranted. That example is sparse both in the matrix over circulants and in
the individual circulant arrays. When thought of as a cube of data, it is sparse in any way of slicing
it into a matrix. After this matrix A is transformed to the Fourier space, it loses its sparsity in the
third dimension; each sparse scalar Ai ,j becomes a dense array. In this case, retaining the coupled
nature of the operations and even avoiding most of the Fourier domain may allow better scalability
in terms of total memory usage.

An interesting topic for future work is exploring other rings besides the ring of circulants or even
more general transformations from a tensor to a matrix as discussed by Brazell [24]. One obvi-
ous candidate is the ring of symmetric circulant matrices. In this ring, the Fourier coefficients are
always real valued. Using this ring avoids the algebraic and computational complexity associated
with complex values in the Fourier transforms.

We have made all of the code and experiments available to use and reproduce our results:
http://www.cs.purdue.edu/homes/dgleich/codes/camat

APPENDIX A: THE CIRCULANT SCALAR MAGNITUDE

This section describes another operation we extended to the circulant algebra. Eventually, we
replaced it with our ordering (Definition 4), which is more powerful as we justify in the succeeding
text. However, it plays a role in our MATLAB package, and thus, we describe the rationale for our
choice of magnitude function here.

For scalars in R, the magnitude is often called the absolute value. Let ˛,ˇ 2R. The absolute value
has the property j˛ˇj D j˛jjˇj. We have already introduced an absolute value function, however.
Here, we wish to define a notion of magnitude that produces a scalar in R to indicate the size of an
element. Such a function will have norm-like flavor because it must represent the aggregate magni-
tude of k values with a single real-valued number. Thus, finding a function to satisfy j˛ıˇj D j˛jjˇj
exactly is not possible. Instead, we seek a function g WKk 7!R such that

1. g.˛/D 0 if and only if ˛ D 0,
2. g.˛ ı ˇ/6 g.˛/g.ˇ/,
3. g.˛C ˇ/6 g.˛/C g.ˇ/.
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The following result shows that there is a large class of such magnitude functions.

Result 1
Any submultiplicative matrix norm kAk defines a magnitude function g.˛/D kcirc.˛/k.

This result follows because the properties of the function g are identical to the requirements of a
submultiplicative matrix norm applied to circ.˛/. Any matrix norm induced by a vector norm is
submultiplicative. In particular, the matrix 1, 2, and1 norms are all submultiplicative. Note that for
circulant matrices, both the matrix 1 and1 norms are equal to the 1-norm of any row or column,
that is, kvec.˛/k1 is a valid magnitude. Surprisingly, the 2-norm of the vector of parameters, that
is, kvec.˛/k2, is not. For a counterexample, let ˛ D f1 2g,ˇ D f2 4g. Then ˛ ı ˇ D f8 10g and

kvec.˛ ı ˇ/k2 D
p
164 > kvec.˛/k2kvec.ˇ/k2 D

p
100. For many practical computations, we

use the matrix 2-norm of circ.˛/ as the magnitude function. Thus,

j˛j � kcirc.˛/k2 D kcft.˛/k1.

This choice has the following relationship with our ordering:

abs.˛/6 abs.ˇ/ ) j˛j6 jˇj.

We implement this operation as the mag function in our MATLAB package.
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